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Abstract 

Traditionally, the matching problem in stereo vision has been formulated as an ill-posed 
problem. However, it has been shown that the matching problem can be well-posed in 
scenes with no occlusions or depth discontinuities. Unfortunately most real scenes do not 
obey these constraints. We overcome this by finding regions within the images in which 
the matching problem is well-posed. That is, we find image regions in which there are no 
occlusions or depth discontinuities. In general, a unique set of such regions does not exist. 
However, we will demonstrate that in almost all cases these regions can be found 
efficiently. Therefore the matching problem can be well-posed in almost all cases. 

In order to find these corresponding regions we transform the problem from finding 2D 
image regions into identifying 3D surfaces. We have developed a method of 3D surface 
extraction which uniquely identifies correct 3D surfaces from a set of potential surfaces, 
order to test the method we have built a four camera system with which we will present 
results from several scenes. 

In 

This research was partially supported by Visual Interface, Inc., and partially by the Advanced Research 
Projects Agency of the Department of Defense under contract number F19628-93-C-0171, ARPA order 
number A655, "High Performance Computing Graphics," monitored by Hanscom Air Force 
Base. 

The views and conclusions contained in this document are those of the authors and should not be interpreted 
as representing the official policies, either expressed or implied, of the Advanced Research Projects Agency, 
the Department of Defense, or the U.S. government. 

19970102 05' 
DTIC QUALITY ESSPÜ ~'*®D 1 



DISCLAIMS! NOTICE 

THIS DOCUMENT IS BEST 

QUALITY AVAILABLE. THE COPY 

FURNISHED TO DTIC CONTAINED 

A SIGNIFICANT NUMBER OF 

PAGES WHICH DO NOT 

REPRODUCE   LEGIBLY. 



Keywords: Early vision, Stereo vision, Multi-baseline, Well-posed problems 



1.       Introduction 

It is well known that computer graphics, the construction of 2D images from 3D models, is 
a well-posed problem: a unique solution does exist, and the solution depends continuously 
on the data. Unfortunately the same is not always true of the inverse problem of 
constructing a 3D model from 2D images [20]. Such a method is stereo matching which 
has typically been formulated as an ill-posed problem unless highly restrictive 
constraints[5,20] are imposed on the final 3D model. Such constraints typically include not 
allowing occlusions or discontinuities. In areas of occlusion there exists no solution to the 
matching problem, thus in general it is impossible for the matching problem to be well- 
posed. However, in areas which do not contain occlusions a solution does exist, allowing 
for the possibility of the problem to be well-posed over these regions of the image. It has 
been shown if a region of the image could be identified as containing no occlusions or 
discontinuities and the corresponding region of another image was identified, the matching 
problem between these regions is well-posed [5]. Unfortunately, in general there is no 
unique solution to identifying these corresponding regions, which once again creates an ill- 
posed problem. However, as we will demonstrate, there is a unique solution which can be 
efficiently found in most cases; making the stereo matching problem well-posed over 
regions in the images. 

Our method works as follows: Assuming known epipolar geometry we can reduce the 
matching problem from a 2D to a ID problem. In real images there are still typically many 
possible matches to each pixel in the reference camera. Now suppose we project every 
match into 3D space. Upon inspection of the set of 3D points we will find a collection of 
potential 3D surfaces. Since the correct surfaces within the set of potential surfaces are 
continuous, the 2D area in which they project on the images must not contain any 
occlusions or discontinuities. Thus, finding corresponding regions in images which 
contain no occlusions or discontinuities is equivalent to finding the correct surfaces from 
the set of potential surfaces. 

Finding the correct potential surface is a surprisingly simple process. When surfaces 
within the scene are not occluded, the correct surface is always the potential surface with 
highest population, i.e. the highest number of 3D points, due to a simple (and non- 
heuristic) geometric constraint. Furthermore, even when a surface is partially occluded, if 
the distance between the surface and the surface occluding it is less than some distance e/2, 

then the correct surface will still obey this constraint. As we shall demonstrate, e is 
dependent on the camera baseline distance and repetition frequency of the texture in the 
scene. By proper stereo camera design e can be made arbitrarily large. 

In order to demonstrate our method with real systems, we built a system with four cameras 
along a similar baseline. Using four cameras instead of two, greatly improved the accuracy 
of the system while also increasing the reliability.   By using a smaller baseline between 
two cameras we can increase e, while using cameras with larger baseline distances 
increases the accuracy.   Furthermore, since more cameras are used a greater number of 
false matches can be eliminated, thus eliminating several potential surfaces. Surprisingly, 
due to the elimination of false matches, increasing the number of cameras can actually 
decrease the algorithm's running time. 

The main contribution of this paper is the method for uniquely finding corresponding 
regions between images in which the disparity is defined and continuous. Within these 
regions the stereo matching problem is well-posed as we will discuss in the next section. 
We will then discuss the relation between the image regions and the potential surfaces, 



along with how the correct surfaces are extracted from the set of potential surfaces. A 
description of the actual algorithm will follow which includes: how to extract multiple 
surfaces, how to create the initial set of 3D points or matches and how potential surfaces 
are created. Finally we will present results from three complex scenes, and accuracy 
measurements from two scenes with known geometry. 

2.       The Well-posed Problem within Regions of Continuous 
Disparity 

Given a image region in which the disparity is continuous, i.e. there exists no occlusion or 
discontinuities, it is possible to formulate the matching problem as well-posed. We will 
assume the epipolar geometry between the cameras is known; for excellent reviews of 
epipolar geometry and stereo vision consult [1, chapter 13], [7, chapter 6], and [8, chapter 
7]. The matching problem is then simplified into a ID problem. Let R(x), and L(x) be the 
intensity values along the epipolar line in the right and left images respectively. Define the 
disparity as d(x). The matching problem can then be defined as the minimization of: 

\\R(x)-L(x + d(x))\\ (1) 

Unfortunately in order for the solution to (1) to be unique R(x) and L(x) must be strictly 
monotonic. In real images this is rarely the case. Therefore we must apply another 
constraint. As [5, p. 47] proposes we can use a constraint of the Tikhonov type to obtain: 

\\R(x)-L(x + d(x))\\ + X\\d(x)\\ (2) 

Thus if d (x) is to exist the disparity must be continuous. As we stated earlier this implies 
the matching problem is only well-posed on regions with no occlusion or depth 
discontinuities. Therefore our task is now to find corresponding regions within the images 
which possess these two properties. 

Formulating the matching problem in this manner is opposite most other methods. In other 
stereo methods using either two or more cameras, it is assumed the problem is ill-posed. 
Thus in order to find the correct match, more complicated methods of local correspondence 
are developed. A typical approach is to use SSD[15, 19], i.e. finding the minimum of the 
sum of squared distances around a pixel. While, using windows as in SSD can increase 
the chance of finding the correct match, it also creates problems such as jagged edges in the 
depth map[4,15,16]. Further attempts at local correspondence have also been attempted 
using adaptive window sizes[10,18], matching in the Fourier domain[9,12,25] and coarse 
to fine methods[3,6,13]. One of the most promising methods has been using multiple 
cameras, or multi-baseline stereo[14,15,19,21-23]. Using multiple cameras can reduce the 
number of false matches without increasing the complexity of the method for matching. In 
all of the above methods, it is assumed that matches are not unique, making the matching 
problem ill-posed. In our method we can uniquely find corresponding regions within the 
images in which the matching problem is well-posed - thus complicated local 
correspondence methods are not needed. 



3.       Extracting the Correct Surfaces from the Set of Potential 
Surfaces 

To find corresponding regions with continuous disparity we first transform the problem 
from 2D images to 3D space. The forward method to find these regions between images 
would require us to pick two regions, 1 and r, within the left and right images respectively 
(figure 1.) We could then solve the matching problem to find a surface using (2). In order 
to decide if these two regions meet our requirements we would then have to examine the 
resulting surface; however we conjecture this step and thus the forward method would be 
quite difficult. 

Instead we solve the inverse problem. First we project all matches into 3D space creating a 
set of 3D points. We then examine the set of 3D points to find subsets which would create 
continuous surfaces and minimize (2). These subsets of the 3D point set are called 
potential surfaces. The projection of the potential surfaces on the images creates regions 
similar to 1 and r. Therefore our task is transformed into finding the correct surfaces among 
the potential surfaces. 

left camera 
optical center 

3D surface 

| |    2D regions 

right camera 
optical center 

Figure 1: The projection of two corresponding image regions into 3D space 

Given a value x, (1) will possess many possible solutions. Each of these solutions can be 
viewed as belonging to a different set of corresponding image regions which may overlap 
in one or both images. Analogously, in the 3D case, each solution will lie on a different 



potential surface. To better illustrate this point consider figure 2. In order to construct the 
potential surfaces from the matches we impose a constraint as in (2). First we assume that 
a particular match M is correct, we then combine all the neighboring matches which 
minimize (2) with respect to M into the same potential surface. Using this method, there 
exists seven potential surfaces in figure 2 of which only one can be correct, assuming the 
objects within the scene are opaque. Since the disparity in (2) is continuous and matches 
are unique within potential surfaces, the potential surfaces must internally obey the left-to- 
right constraint, i.e. matches must maintain there order between images. Thus only a true 
surface will entirely project onto a non-occluded object within an image. Therefore, in 
order to find the correct surface of a non-occluded object, we simply pick the potential 
surface with the greatest population. In figure 2 this would be the middle surface. Finally 
as illustrated by figure 2 notice each potential surface is separated by a certain distance e. 

left camera 
optical center O        possible match 

     potential surface 

right camera 
optical center 

Figure 2:    The projection of two images containing a repetitively textured 
object into 3D space.    Notice the potential surface with the highest number 
of matches is the correct surface. 

Now, let us consider the case of partially occluded objects. Unlike non-occluded objects 
the entire object is not visible from all cameras. Thus, the true surface has portions missing 
as seen from the reference camera. Therefore as shown in figure 3 it is possible that a false 
surface could contain more points or matches than the correct surface. However, it is very 



unlikely this case will occur for two reasons: If the distance between the occluded object 
and the occluding object is less than e/2 it is impossible for this case to occur. Typically e 
is fairly large, especially when smaller baseline distances between cameras are used. 
Second, in order for the false surface to contain more points than the true surface, the 
occluded object must have a highly repetitive texture. If a highly repetitive texture is not 
present, there will be fewer false matches and false surfaces will occur at greater depth 
intervals. 

True surface 

False surface 

Figure 3: A true surface which is occluded can appear to be smaller than a 
false surface. 

4.       Finding Multiple Correct Surfaces From a Set of Potential 
Surfaces 

Since correct surfaces are almost always the largest visible surface as seen from the 
reference camera, we can easily find one correct surface. We can simply count the number 
of points in each potential surface and pick the one with the most points as a correct 
surface. Picking the second surface becomes more complicated. After we pick the first 
surface we remove it from the set of potential surfaces, but all of the false surfaces 
corresponding to it are still included in the set. Hence, it is very likely that one of these 
false surfaces will be picked next if only the population of the potential surfaces are 
considered. Thus, we make an assumption about the objects within the scene: all objects 
are opaque. Therefore, after a potential surface is picked as a correct surface all of its 
points are projected onto the reference camera. Then in order for a future surface to be 



correct it must not overlap any previously found correct surfaces as seen from the reference 
camera. This process of picking the next largest potential surface and checking if it 
overlaps previously found correct surfaces is repeated until only potential surfaces of some 
fixed size are left. 
An example of picked surfaces is illustrated by figure 4. Notice that every pixel within a 
neighborhood of a taken pixel was also declared taken by the same surface. This helps 
guarantee that two surfaces will not overlap. 
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Figure 4:    Example of picked potential surfaces,    (a) The reference image. 
(b) Surfaces picked, each color represents a different surface. 

As stated earlier we continue picking surfaces until only surfaces of some fixed size are 
left. The likelihood of picking a false surface becomes greater as the surface size 
decreases. If there is low texture or objects are highly non-lambertain it is unlikely that 
many points or matches will be found. Thus, objects with low texture are generally 
broken up into many small surfaces.   As a consequence our assumption that the potential 
surface with the most points is a true surface is no longer valid. Therefore all surfaces 
below a certain size, generally between 50 and 100 points depending on the scene are not 
picked. 

5.       The Set of Three-dimensional Points 

Using only two cameras our method first seeks to find a collection of points in three- 
dimensional space such that all true (actual surface) points are included, but a number of 
false (false match) points may also be included—in fact, they form the great majority of 
points resulting from this step. Using the remaining cameras, we then refine the accuracy 
of the true points, and eliminate some of the false points. Finally in the second and third 
step we group points into potential surfaces and separate the false points from the true. 



5.1      Properties of the set of points 

In order to ensure that the second and third step can properly extract correct surfaces, the 
set of points resulting from the first step must possess several properties: 

1. High accuracy for correct points 
2. Minimum number of false points 
3. Each point is the result of a weighted average of unique matches from each 

camera pair. 
4. Only pixels with a local intensity slope greater than the greatest ratio of baseline 

distances are considered for matches. 

As we shall see later, property 3 places constraints on properties 1 and 2, but property 3 is 
necessary to guarantee that true points are separated from false points by some fixed 
distance. Similarly property 4 is needed to ensure proper separation between correct and 
false points. 

5.2     Camera  Setup 

We will assume that all cameras c; for i from 0 to n are along a similar baseline. We will 
designate c0 to be the reference camera. The cameras c; for i from 1 to n will be ordered by 
their distance from the reference camera, i.e. c, is the closest camera to c0(figure 5). Each 
camera pair consisting of cameras c0 and ci; will be designated as C;. Finally, every camera 
Cj has a 4x3 perspective transform matrix T; [7, chapter 3, 7] which relates three- 
dimensional points to homogenous image coordinates, i.e. we assume the pin-hole model 
for cameras. 

O O o o o 

Figure 5:    Cameras along a similar baseline. 

5.3     Constructing a Set of 3D Points 

Using the camera pair C: with the smallest baseline, the first step works as follows: Under 
perspective projection, any possible match to a pixel P in the reference image will lie on the 
corresponding epipolar line within c,. When we examine the epipolar line more closely, as 
shown in Figure 6, we find that due to the discrete nature of images, its values must be 
calculated by interpolation. If we use a simple and effective technique like bilinear 
interpolation the values calculated along it look like the series of linear ramps shown in 
Figure 7. 



Figure 6:    Magnified view of intensity image, and epipolar line. 

Distance along epipolar line 

    Intensity values from epipolar line 
    Intensity value from reference image 

\_)       Correct match, correct sign of gradient 

9       False match, wrong sign of gradient 

Figure 7:    Interpolated values of the epipolar line L, with corresponding 
possible matches to pixel P in the reference image. 

In order to find possible matches simply find the intersection points of the linear ramps 
shown in Figure 7 with the constant line at the pixel value for P from the reference image. 
We can eliminate half of these intersection points by including the sign of the gradient at P 
when we do the intersection. The result is a collection of possible matches for P that 
includes both its true match and a number of false matches. This process can be done in 
time proportional to the number of pixels in the epipolar line. The time for this step is on 
the order of C*N *T, where C is the number of cameras included in the local set, N is the 
image resolution, and T is the number of pixels in the epipolar line. 



Note that, in common with every other stereo vision technique of which we are aware, we 
are assuming that all corresponding pixels possess the same appearance in all cameras. This 
is the Lambertian objects assumption, essentially assuming that all world surfaces are 
microscopically rough, like flat wall paint. 

When using a camera pair with a short baseline distance, correct matches are rarely 
eliminated, since images from nearby cameras are so similar. Furthermore, the number of 
false matches is reduced since the epipolar line is foreshortened with the camera pair of 
shortest baseline distance.   Unfortunately, smaller baseline distances cause inaccurate 
depth estimates. 

Sample output from using one camera is illustrated in figure 8. Over 222,000 points were 
found using a camera pair approximately 1.5m from the model town with a baseline 
distance of 72.2mm. 

(a) (b) 

Figure 8: Example of point set after first step using the camera pair with 
the shortest baseline,    (a) The intensity image (486x528) from the reference 
camera,    (b) The resulting point set viewed from above. 

The next step iterates among the remaining camera pairs in order of baseline distance to 
refine the depth estimates and remove many false points. Since we know the approximate 
depth from the first step we can limit our search for a new match in another camera pair, Q, 
to a window around the previous match with radius EM+E;, the sum of the error values for 
the camera pairs. If a match is found within this window a new depth estimate is created 
by averaging the depth estimates together using baseline lengths as weights. This ensures 
that estimates with larger baselines and thus higher accuracy are weighted more. With the 
refined depth estimate we repeat the process using the next camera pair until all camera 
pairs are used. If a match is not found within the window we conclude the point found 
using previous camera pairs is a false point and remove it from the point set. 

10 



The time for this step is on the order of D*N *U, where D is the number of cameras in the 
distant set, N is the image resolution, and U is the number of possible matches for a pixel 
from the first step. 

The resulting point set should possess the first two properties stated earlier. Using camera 
pairs with larger baseline distances increases the accuracy of the good points satisfying 
property 1, while using smaller baselines eliminates many false points property 2. 
Unfortunately, there is a limit to the size ratio of large baselines to small resulting from 
property 3. In order to better understand this we will discuss the error associated with each 
camera pair. 

An example of the point set after all cameras are used is illustrated by figure 9. The number 
of points has been reduced to 34,000 with the correct points still members of the set. 

(a) (b) 

Figure 9: Example of point set after step two using all camera pairs,    (a) 
The intensity image (486x528) from the reference camera, (b) The resulting 
point set viewed from above. 

5.4     Estimation of Accuracy 

Given a three dimensional point p, with corresponding point P0 in c0, there are two 
constraints on error. The first relates to the camera characteristics and location. The 
second relates to the scene itself, i.e. the amount of texture within the scene. For this 
section we assume the point p is the result of correct matches from each camera pair. 

11 



Define 1 as the 3D line resulting from the projection of P0, and the epipolar line L as the 
projection of 1 onto c;. The first step is to find t;, the three dimensional distance along 1 
traveled per pixel in L. Given the intrinsic and extrinsic parameters for the cameras we can 
compute Tj the perspective transformation for camera c;[l 1]. Given a depth estimate d 
along the line 1 we can compute t; by: 

"ma (3) 

Given t; we can now find the error by using local slopes within the images. Since we are 
only finding an approximation for the error we assume that all intensities are linear. Let the 
three dimensional point p project onto point P; in c;. Since we assume that intensities are 
linear we can easily find the slope of the intensity value s{, along the epipolar line L at Pj. 
Thus the error for the camera pair Q is simply: 

fi = - (4) 
Si 

After each depth estimate is averaged together weighted by baseline lengths we can 
combine the different errors, E{ for i from 1 to n to find the error Et, for the final depth 
estimate. Define b{ to be the baseline distance for the camera pair Ct. 

Y^Eibt 
Et = ^— (5) 

n^bi 
i=i 

5.5     The Relation of Accuracy and Reliability to Baseline 
Distances and Minimum Intensity Slopes 

We will now examine property 3 of the point set; each point is the result of a weighted 
average of unique matches from each camera pair. That is, given an 3D point estimate p 
after using camera pair C{, there should be only one possible match using camera pair Ci+1 
within a window of Es + Ei+1 around p. 

Therefore the distance between possible matches in Ci+1 must be greater than 2(E;+Ej+1). 
Let pj be a possible match within E{ + Ei+1 of p. By examining the epipolar line around P;, 
the projection of ft on c{, we find the closest possible match Pj', to Ps. Obviously, the 2D 
distance di; from P; to Pj' must always be at least 2 pixels, if matches have the same sign of 
the gradient. Consequently, if property 3 is to hold, the following must be true: 

2(Ei + Ei + i)<diti + \ (6) 

< diti +1 (7) 
_.   ti        ti + l^\ 
2 - + — 

Si      Si + \J 

ti UiSi Si ._. 
■< — +  (8) 

tl + \ 2 Si +1 
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If we assume —— ~ 1 
Si + l 

ti diSi 

ti + \      2 

If we assume d; = 2 

t 

+ 1 (8) 

ti + l 
= si + l (9) 

Since epipolar line length is proportional to baseline length, we can simplify (9) even 
" If C 

bi 

further. If C, has a baseline distance of b and Ci+1 has a baseline distance of bi+1 then: 

bi 
■ = Si + l (10) 

+ i 

Thus, the ratio of baseline distances between camera pairs should not be greater than the 
local slope around pixels. Therefore, as stated by property 4, a pixel should only be 
considered for a possible match if the local slope around the pixel is greater than the ratio of 
baseline distances. 

5.6     The Distance Between Correct and False Points 

As we stated earlier property 3 of the set of points helps guarantee that false points are 
separated from true points by some fixed distance. Property 3 of the point set states that 
each three dimensional point is the weighted averaged of unique matches from each camera 
pair. Thus for each match found using the camera pair of smallest baseline distance there is 
at most one match found per other camera pair. Therefore in order to determine the 
distance between points we need only look at the camera pair of smallest baseline distance 
C,. As stated earlier there is at least 2 pixels between matches in camera cr Thus e, the 
minimum distance between correct and false points, is easily computed as: 

e = 2ti-Ei (11) 

The distance traveled per two pixels in c, minus the error associated with Cv 

6.       The Potential Surfaces 

So far we have discussed a method for extracting correct surfaces from a set of potential 
surfaces. Now we will discuss the potential surfaces themselves. What is a potential 
surface? It is a group of three dimensional points with the potential of being the correct 
surface of some object in the scene. If an object within a scene has a continuous surface as 
seen from the reference camera, then all points which correspond to that object are in the 
same potential surface. Since there is usually adequate separation between correct and false 
points, object surfaces need not be smooth in order for potential surfaces to be successfully 
created. However, if objects lack texture there may be many potential surfaces which 
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correspond to it. Thus the population of extracted correct surfaces can typically range from 
only 50 points to over 10,000. 

6.1      Properties of the Potential Surfaces 

In order to find correct points, our strategy is to link together 3D points that could belong to 
the same opaque surface, and then to extract the true opaque surfaces. These potential 
surfaces consist of three dimensional points possessing the following properties: 

1. A potential surface contains either true (actual surface) or false points, never a 
mixture. 

2. Two correct points from the same unobscured object are in the same potential 
surface. 

3. Two points within the same potential surface must not overlap as seen from the 
reference camera. 

6.2     Method for Grouping Points into Potential Surfaces 

Creating surfaces with these properties is straightforward. As we have shown false points 
are separated from correct points by some fixed distance e. 

Define the projection of 3D points p and p' onto the reference camera to be P and P'. If P' 
is within a 2D window, W, around P then p and p' are defined to be within the same 
potential surface if: 

Define z and z' to be the distance from p and p' to the reference camera. 

\z-z'\<S (12) 

Since it is common for points to be missing on the true surface, especially at intensity peaks 
and areas of low texture, W is greater than 1, in practice it is usually set between 3 and 5. 
As 8 increases the ability of finding surfaces at extreme angles to the reference camera 
increases, but the likelihood of adding false points to true surfaces also increases. 
Therefore, we must reach a balance between 8, W and the greatest surface normal 9 
allowed within a potential surface. In order to ensure potential surfaces are reliably created 
the following must be true: 

1. 8<e (13) 

2. Define pw to be the inverse projection of P+W at the same depth as p, i.e. 
To(pw) = P + W. 

0<tan -=—^- (14) 
\pw-p) 
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Since (e-8) tends to be fairly large with respect to (pw-p), 8 can be set to a wide range of 

values without much affect to the final depth map. Therefore, we generally set 5 to be less 

than e/4 to minimize the probability of the method failing. 

6.3     Probability of Creating Potential Surfaces Failing 

This process of creating potential surfaces is completely reliable, except at surface 
boundaries. In the interior of a potential surface the use of camera pairs with short baseline 
distances forces the false matches to occur at fairly wide distances from each other, with the 
result that the surface creating process never combines the interior parts of a false and a true 
surface. 

At the surface boundary, this constraint does not apply, but we can compute the probability 
of including a bad point in a good surface by noting the distance between the false points. 
The probability that first camera pair found a match within W is: 

T- (15> d\t\ 

Then the probability of all camera pairs agreeing on the match is: 

SW-rrEt + En-i 
T~\.\. ~>  (16) d\t\ ,=2 diti 
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7.       Passive Lighting Experiments 

To test the reliability of our algorithm we constructed a system using four cameras (Sony 
XC-75, 486x528) along a horizontal baseline, figure 5.1. The intrinsic and extrinsic 
parameters of the cameras were found using the same method as [11]. The average focal 
length for the cameras was 19mm, minimizing any barreling distortion. As shown in table 
5.1 the baseline ratio between C, and C2 is 2.6, thus pixels with local intensity slopes less 
than 3 were not considered for possible matches. To obtain better results a Lapacian of 
Guassian with a=3 pixels was used to normalize the images. This was nessecary due to 
non-lambertain objects, and the gains and offsets of the cameras not being calibrated. 
Typical running time for the three scenes was 30 seconds for the first step and 30 seconds 
for the last two steps on an Indigo 2 xz. The objects within the scenes were about 1.5m 
from the reference camera. The average theoretical error(5) for the scenes is 0.47mm. The 
probability(16) of adding false points or matches onto correct surfaces is 0.13%. The 
average distance between false and correct surfaces was 83.9mm, with the minimum 
distance e = 29.6mm. 

O O o o 

Figure 10:    Camera setup for experimental results. 

Camera 1 Camera 2 Camera 3 

Baseline 
Distance(mm) 72.19 187.47 336.19 

mm/pixel 16.77 6.42 3.66 

Table 1:   Distance from each camera to reference camera, and the average 
three dimensional distance traveled in the workspace per pixel in each 
camera. 
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7.1      Model Town Scene 

The results using the model town illustrates the reliablity of the algorithm. No false regions 
where picked, and only a small number of false points were included with the true regions. 
Areas of low texture produce no points as expected. 

Camera 0 

Camera 2 Camera 3 

Figure 11:   Intensity images from the four cameras 
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Figure 12:   Results from Algorithm,    (a) Depth Map.    (b)   Final point set 
viewed from above,     (c) Regions picked. 

Number of Final number of Number of Number of Number of 
points after true points potential potential potential 
second step surfaces surfaces with 

more than 80 
points. 

surfaces picked 
as correct. 

33,785 15,785 2610 11 10 
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7.2     Left-to-Right Constaint 

The next scene illustrates two advantages of the algorithm. First, the vertical stick changes 
order within the images relative to the stripped paper. Since the left-to-right constraint does 
not apply to our algorithm unlike most edge-based algorithms [17] both the stripped paper 
and stick are found. The missing sections of the paper are due to occlusion by the wooden 
stick in one of the images. Second, the stripped pattern on the piece of paper is a repetitive 
pattern. With traditional multi-baseline stereo algorithms this would typically produce 
gross errors, however, no errors resulted using our algorithm. 

Camera 0 Camera 1 

Camera 2 Camera 3 

Figure 13:   Intensity images from the four cameras 
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Figure 14:   Results from Algorithm,    (a) Depth Map.    (b)   Final point set 
viewed from side,    (c) Regions picked. 

Number of Final number of Number of Number of Number of 
points after true points potential potential potential 
second step surfaces surfaces with 

more than 80 
points. 

surfaces picked 
as correct. 

24,065 12,815. 1336 11 9 
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7.3     Shirt and Books 

Even though there is low texture on many areas of the shirt (lowest object) correct points 
are still found. However, the algorithm failed to find points on one of the fingers due to 
low texture. Finally notice how no points were found at the center of the left book. This is 
caused by spectular reflection. 

Camera 0 Camera 1 

Camera 2 Camera 3 

Figure 15:   Intensity images from the four cameras 
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Figure 16:   Results from Algorithm,    (a) Depth Map.    (b)   Final point set 
viewed from side,     (c) Regions picked. 

Number of Final number of Number of Number of Number of 
points after true points potential potential potential 
second step surfaces surfaces with 

more than 80 
points. 

surfaces picked 
as correct. 

41,743 21,980 889 13 12 
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8.       Active Lighting Experiments 

In order to find the best case results of our algorithm we used active lighting on two scenes 
in order to create texture. The projected vertical line pattern varies from light to dark 
linearly. Since the gains and offsets of each camera vary, we have linearly adjusted the 
intensity values based on the local minimum and maximum pixel values. The camera setup 
is identical to that of the previous section. To measure the results we fit the points to a 
plane or cylinder to measure the average error, standard deviation and maximum error. The 
average local intensity slopes for the planar and cylinder scenes are 29.7 and 35.6 
respectively. We believe the difference between the theoretical error and average error is 
due to the objects not being perfectly Lambertain and our assumption that the intensities 
vary linearly. 

8.1      Plane  Experiments 
The average theoretical error for this scene is 81(0.. 

(a) (b) 

(c) (d) 
Figure 17:   Intensity images from the four cameras 
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Figure 18: Planar regions tested 

Region Number of 
Points 

Surface Normal Average 
Error 

Standard 
Deviation 

Maximum 
Error 

A 3,022 (-0.999, -0.014, 0.0088 ) 258M 204|i 1480^1 

B 1,155 (-0.007, -0.554, -0.833 ) 
267M 195p. 1352M 

C 12,846 ( 0.045, -0.036, -0.998 ) 300M 238M 2198M 

D 890 ( 0.010, 0.828, -0.561 ) 21811 166M 1305M 

Table 2:    Number of points, surface normal, average error, standard 
deviation and maximum error of the planar regions 
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8.2     Cylinder  Experiment 

The average theoretical error for this scene is 69|i. 

(a) 

III aw   liillil\mmilmnmftmiih 
mMuhmhl 

(b) 

(c) (d) 

Figure 19:   Intensity images from the four cameras 
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Figure 20: Area of cylinder tested 

Number of 
Points 

Theoretical Error Average Error Standard Deviation Maximum Error 

9,560 69[X 179M- 169|i 1719J1 

Table 3: Number of points, theoretical error, average error, standard 
deviation and maximum error of the cylinder data 
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9.       Conclusion 

Within this paper we have demonstrated a method for uniquely identifying corresponding 
image regions in which the matching problem is well-posed. In order to identify the image 
regions we have transformed the problem into one of identifying correct 3D surfaces from a 
set of potential surfaces. These correct surfaces can then be projected onto the images to 
identify the regions, however this is typically not necessary since the correct 3D surfaces 
are actually the desired output. We have shown there exists a method for uniquely 
extracting the correct surface from the set of potential surfaces when the surface is not 
occluded by another surface by greater than a distance £/2. Furthermore we have shown 
the construction of potential surfaces is stable since false surfaces are separated from 
correct by at least e. 

In order to demonstrate the effectiveness of our algorithm we have built a four camera 
system. We have results from three complex scenes showing the resulting correct 
surfaces. Accuracy measurement were also done on two scenes with an average error of 
250p, and I79\i. 
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